{-# LANGUAGE NamedFieldPuns #-} module Lib where import Control.Monad (join) import Flow import qualified Data.Map.Strict as Map import Data.Maybe (listToMaybe, maybeToList) import qualified Data.Set as Set import Text.ParserCombinators.ReadP type IntType = Int data Vec2 = Vec2 IntType IntType deriving (Eq, Ord, Show) vAdd :: Vec2 -> Vec2 -> Vec2 vAdd (Vec2 aX aY) (Vec2 bX bY) = Vec2 (aX+bX) (aY+bY) data Direction = North | East | South | West deriving (Eq, Ord, Show) dOpposite :: Direction -> Direction dOpposite North = South dOpposite East = West dOpposite South = North dOpposite West = East dVec :: Direction -> Vec2 dVec North = Vec2 0 (-1) dVec East = Vec2 1 0 dVec South = Vec2 0 1 dVec West = Vec2 (-1) 0 data Tile = Path | Start | End | Wall deriving (Eq, Ord, Show) type WorldMap = Map.Map Vec2 Tile data Edge = Edge { eDirFrom :: Direction, eFrom :: Vec2, eDirTo :: Direction, eTo :: Vec2, ePrice :: Int } deriving (Show) type WorldGraphEdges = Map.Map Vec2 [Edge] data WorldGraph = WorldGraph { wStart :: Vec2, wEnd :: Vec2, wEdges :: WorldGraphEdges } deriving (Show) task1 :: String -> IO IntType task1 input = let worldMap = parseFile input rawGraph = mapToGraph worldMap in do worldGraph <- simplifyGraph rawGraph worldGraph |> wEdges |> Map.elems |> join |> showEdgesSimple |> putStrLn (bestPath, _) <- dijkstra worldGraph Map.empty (Map.singleton (wStart worldGraph, East) (0, [])) return bestPath task2 :: String -> IO IntType task2 input = let worldMap = parseFile input rawGraph = mapToGraph worldMap in do (bestCost, bestPaths) <- dijkstra rawGraph Map.empty (Map.singleton (wStart rawGraph, East) (0, [])) [wEnd rawGraph] : bestPaths |> join |> Set.fromList |> length |> return showEdgesSimple :: [Edge] -> String showEdgesSimple [] = "" showEdgesSimple (edge:edges) = (show $ eFrom edge) ++ " -> " ++ (show $ eTo edge) ++ ": " ++ (show $ ePrice edge) ++ "\n" ++ (showEdgesSimple edges) type WasBestePreis = (Int, [(Vec2, Direction)]) dijkstra :: WorldGraph -> Map.Map (Vec2, Direction) WasBestePreis -> Map.Map (Vec2, Direction) WasBestePreis -> IO (Int, [[Vec2]]) dijkstra world@WorldGraph { wEdges, wEnd, wStart } done unvisited | null unvisited = let bestePreis = [North, East, South, West] |> map (\d -> done Map.!? (wEnd, d) |> maybeToList) |> join |> foldr combineBestePreis (maxBound :: IntType, []) in bestePreis |> \(p, os) -> (p, map (reconstructPath done) os |> join) |> return | otherwise = let ((pos, dir), (cost, _)) = findNext nextDone = Map.insert (pos, dir) (unvisited Map.! (pos, dir)) done outgoing = Map.findWithDefault [] pos wEdges unvisitedOutgoing = outgoing |> filter (\Edge { eTo, eDirTo } -> Map.notMember (eTo, eDirTo) done) unvisitedOutgoingWithPrice = unvisitedOutgoing |> map (\e@Edge { eDirFrom, ePrice } -> (e, if dir == dOpposite eDirFrom then cost + ePrice else cost + ePrice + 1000)) :: [(Edge, IntType)] unvisitedWithoutCurrent = Map.delete (pos, dir) unvisited nextUnvisited = foldr (\(Edge { eTo, eDirTo }, price) -> Map.alter (pure . maybeCombineBestePreis (price, [(pos, dir)])) (eTo, eDirTo)) unvisitedWithoutCurrent unvisitedOutgoingWithPrice in dijkstra world nextDone nextUnvisited where findNext :: ((Vec2, Direction), WasBestePreis) findNext = let options = unvisited |> Map.assocs in foldr (\a@(_,(aC,_)) b@(_,(bC,_)) -> if aC < bC then a else b) (head options) (drop 1 options) maybeCombineBestePreis :: WasBestePreis -> Maybe WasBestePreis -> WasBestePreis maybeCombineBestePreis a Nothing = a maybeCombineBestePreis a (Just b) = combineBestePreis a b combineBestePreis :: WasBestePreis -> WasBestePreis -> WasBestePreis combineBestePreis (aP, aOs) (bP, bOs) | aP < bP = (aP, aOs) | aP == bP = (aP, aOs ++ bOs) | aP > bP = (bP, bOs) reconstructPath :: Map.Map (Vec2, Direction) WasBestePreis -> (Vec2, Direction) -> [[Vec2]] reconstructPath done cur@(curPos,_) = case done Map.!? cur of Nothing -> [[curPos]] Just (_,[]) -> [[curPos]] Just (_,os) -> map (reconstructPath done) os |> join |> map (\subPath -> curPos : subPath) showEntries :: Show a => Show b => [(a,b)] -> String showEntries [] = "" showEntries ((k,v):rest) = show k ++ ": " ++ show v ++ "\n" ++ showEntries rest findBestPath :: WorldGraph -> [(Vec2, Direction)] -> Maybe Int findBestPath _ [] = error "Must call findBestPath with an initial position" findBestPath world@WorldGraph { wEdges, wEnd } ((lastPos, lastDir):path) = let edgeOptions = wEdges Map.!? lastPos |> expectJust ("Position is missing in map " ++ show lastPos) |> filter (\Edge{eTo=optTo} -> not $ listContains optTo $ map (\(p,_) -> p) path) in case edgeOptions |> map (maybeToList . exploreOption) |> join of [] -> Nothing prices -> return $ minimum prices where exploreOption :: Edge -> Maybe Int exploreOption edge@Edge{ePrice, eDirFrom, eTo, eDirTo} | eTo == wEnd = Just hopPrize | otherwise = findBestPath world ((eTo, eDirTo):(lastPos, lastDir):path) |> fmap (\pr -> pr + hopPrize) where hopPrize :: Int hopPrize = if eDirFrom == dOpposite lastDir then ePrice else ePrice + 1000 mapToGraph :: WorldMap -> WorldGraph mapToGraph worldMap = let start = Map.assocs worldMap |> filter (\(_, t) -> t == Start) |> listToMaybe |> expectJust "No start found" |> entryKey end = Map.assocs worldMap |> filter (\(_, t) -> t == End) |> listToMaybe |> expectJust "No end found" |> entryKey pathMap = worldMap |> Map.filter ((/=) Wall) edges = pathMap |> Map.keys |> map edgesFromPos |> join edgesByFrom = map (\e -> (eFrom e, [e])) edges |> Map.fromListWith (++) in WorldGraph { wStart = start, wEnd = end, wEdges = edgesByFrom } where edgesFromPos :: Vec2 -> [Edge] edgesFromPos pos = [North, East, South, West] |> map (\dir -> dVec dir |> vAdd pos |> \t -> if validTarget $ worldMap Map.!? t then [Edge { eDirTo = dir, eTo = t, eDirFrom = dOpposite dir, eFrom = pos, ePrice = 1 }] else []) |> join validTarget :: Maybe Tile -> Bool validTarget (Just Wall) = False validTarget (Just _) = True validTarget _ = False simplifyGraph :: WorldGraph -> IO WorldGraph simplifyGraph world@WorldGraph { wStart, wEnd, wEdges } = case Map.assocs wEdges |> filter (\(p, edges) -> p /= wStart && p /= wEnd && length edges <= 2) of [] -> return world ((pos, []):_) -> simplifyGraph WorldGraph { wStart, wEnd, wEdges = Map.delete pos wEdges } ((_, [e]):_) -> do --putStrLn $ "Removing " ++ (show e) simplifyGraph WorldGraph { wStart, wEnd, wEdges = removeEdge e wEdges } ((_, [e1, e2]):_) -> let newEdges = wEdges |> combineEdges e1 e2 in do --putStrLn $ "Combining " ++ (show e1) ++ " : " ++ (show e2) simplifyGraph WorldGraph { wStart, wEnd, wEdges = newEdges } _ -> error "Ureachable in simplifyGraph" where combineEdges :: Edge -> Edge -> WorldGraphEdges -> WorldGraphEdges combineEdges e1@Edge { eDirFrom = eDirFrom1, eTo = eTo1, eDirTo = eDirTo1, ePrice = ePrice1 } e2@Edge { eDirFrom = eDirFrom2, eTo = eTo2, eDirTo = eDirTo2, ePrice = ePrice2 } edges = let combinedPrice = ePrice1 + ePrice2 + if eDirFrom1 == dOpposite eDirFrom2 then 0 else 1000 in edges |> removeEdge e1 |> removeEdge e2 |> Map.adjust (\es -> Edge { eFrom = eTo1, eDirFrom = eDirTo1, eTo = eTo2, eDirTo = eDirTo2, ePrice = combinedPrice }:es) eTo1 |> Map.adjust (\es -> Edge { eFrom = eTo2, eDirFrom = eDirTo2, eTo = eTo1, eDirTo = eDirTo1, ePrice = combinedPrice }:es) eTo2 removeEdge :: Edge -> WorldGraphEdges -> WorldGraphEdges removeEdge Edge { eFrom, eTo } edgesMap = edgesMap |> Map.adjust (\edges -> edges |> filter (not . (isEdgeTo eTo))) eFrom |> Map.adjust (\edges -> edges |> filter (not . (isEdgeTo eFrom))) eTo isEdgeTo :: Vec2 -> Edge -> Bool isEdgeTo testTo Edge { eTo } = testTo == eTo parseFile :: String -> WorldMap parseFile input = case readP_to_S parse input of [] -> error "Failed to parse" ((v,_):_) -> v where parse :: ReadP WorldMap parse = do worldMap <- parseWorld _ <- eof return worldMap parseWorld :: ReadP WorldMap parseWorld = do ls <- many1 parseLine zip [0..] ls |> map (\(y, line) -> zip [0..] line |> map (\(x, c) -> (Vec2 x y, toTile c))) |> join |> Map.fromList |> return where parseLine :: ReadP String parseLine = do content <- munch1 (not . isNewLine) _ <- char '\n' return content toTile :: Char -> Tile toTile '.' = Path toTile 'S' = Start toTile 'E' = End toTile '#' = Wall toTile c = error $ "Unknown tile: " ++ [c] isNewLine :: Char -> Bool isNewLine = (==) '\n' listContains :: Eq a => a -> [a] -> Bool listContains _ [] = False listContains a (e:es) = if a == e then True else listContains a es nothingIfEmpty :: Foldable t => t a -> Maybe (t a) nothingIfEmpty values | null values = Nothing | otherwise = Just values entryKey :: (a,b) -> a entryKey (k,_) = k entryValue :: (a,b) -> b entryValue (_,v) = v expectJust :: String -> Maybe a -> a expectJust message Nothing = error message expectJust _ (Just value) = value